
Neatar Security Analysis

by Pessimistic

This report is public

December 1, 2021

Abstract ...2

Disclaimer ...2

Summary ..2

Project overview ...3

Project description ..3

Review procedure ...4

Automated analysis ...4

Manual analysis ..4

Issues ..4

Automated analysis ..5

Manual analysis ..6

High severity issues ..6

Bug ..6

Bad design ..6

Limited avatar creation rate ...6

Non-approved avatar change ..6

Low severity issues ...7

Excessive gas consumption ..7

Insufficient error handling ..7

Unnecessary assignments ..7

Blockchain Security Analysis by Pessimistic 1

Abstract
In this report, we consider the security of smarts contracts of Neatar project. Our task is to
find and describe security issues in the smart contracts of the platform.

Disclaimer
The audit does not give any warranties on the security of the code. One audit cannot be
considered enough. We always recommend proceeding with several independent audits and
a public bug bounty program to ensure the security of smart contracts. Besides, security
audit is not an investment advice.

Summary
In this report, we considered the security of Neatar project smart contracts, available on a
public GitHub repository. We performed our audit according to the procedure described
below.

The audit showed four issues of high severity. Also, several low-severity issues were found.

The only provided documentation for the project is a readme.md file in the repository. The
code base is thoroughly covered with tests.

Blockchain Security Analysis by Pessimistic 2

https://learnnear.club/neatar/
https://learnnear.club/neatar/
https://github.com/Learn-NEAR-Club/neatar-dapp
https://github.com/Learn-NEAR-Club/neatar-dapp/blob/main/readme.md

Project overview

Project description
For the audit, we were provided with Neatar project smart contracts on a public GitHub
repository, commit 6747cfbd64238585ecefbe2595ae040a0dcacf92.

The repository contains the README.md file.

The Neatar contract complies with Core and Metadata sections of NEP-171 NFT
standard.

The code base is thoroughly covered with tests.

Blockchain Security Analysis by Pessimistic 3

https://github.com/Learn-NEAR-Club/neatar-dapp
https://github.com/Learn-NEAR-Club/neatar-dapp/tree/6747cfbd64238585ecefbe2595ae040a0dcacf92
https://github.com/near/NEPs/discussions/171

Review procedure
We perform our audit according to the following procedure:

Automated analysis
We compile the contracts.

We scan the project’s codebase with Clippy static analyzer.

We manually verify (reject or confirm) all the issues found by the tool.

We run Valgrind on the contract in emulated environment.

Manual analysis
We manually review the code and assess its quality.

We check the code for known vulnerabilities.

We check whether the code logic complies with the provided documentation.

We suggest possible gas and storage optimizations.

Issues
We are actively looking for:

Access control issues (incorrect admin or users identification/authorization).

Lost/stolen assets issues (assets being stuck on the contract or sent to nowhere or to a
wrong account).

DoS due to logical issues (deadlock, state machine error, etc).

DoS due to technical issues (Out of Gas error, other limitations).

Contract interaction issues (reentrancy, insecure calls, caller assumptions).

Arithmetic issues (overflow, underflow, rounding issues).

Incorrect Near SDK usage.

Other issues.

Blockchain Security Analysis by Pessimistic 4

https://github.com/rust-lang/rust-clippy

Automated analysis
Automated analysis did not show any issues:

We run Clippy static analysis tool on the project’s source code. It did not discover
any issues, since the team uses it regularly.

We run Valgrind on the provided unit tests. It did not detect any memory issues.

Blockchain Security Analysis by Pessimistic 5

Manual analysis
The audit showed several issues in neatar.rs source file. All these issues are listed below.

High severity issues
High severity issues severely disrupt, cripple, or otherwise violate the contract’s behavior. We
do not recommend deploying or using the contracts with any issues of this severity.

Bug
176 and_then(|per_owner| per_owner.remove(&owner_id))

The ft_burn() function is supposed to remove a single token by its ID. However, the code
removes the whole list of tokens that belong to the user. It leaves the storage of the contract
in an inconsistent state.

Bad design
209 let owner_id = env::signer_account_id();

The contract grants an avatar (token) to the signer of the transaction, rather than to the caller
(i.e., env::predecessor_account_id()) of avatar_create() function. It prohibits
complex flows with contract interactions and limits overall usefulness of the project. We
recommend always interacting with the caller regardless of the call stack.

Limited avatar creation rate
227 &env::sha256(format!("{}-{}", owner_id,

env::block_timestamp()).as_bytes());

Only one avatar can be created by a user within a single block. This restriction seems
unreasonable. It prohibits complex flows with contract interactions and limits the overall
usefulness of the project.

Non-approved avatar change
The user’s avatar can be changed without an approval from the user, since anyone can
transfer a Neatar token to any other account, and the last received token is used as the
avatar.

Blockchain Security Analysis by Pessimistic 6

Low severity issues
Low severity issues do not directly affect project operation. However, they might lead to
various problems in the future versions of the code. We recommend taking them into
account.

Excessive gas consumption
160 let list = self.token.nft_tokens_for_owner(account_id, None,

None);

The list of user’s tokens is uploaded to a local variable. However, only the last value is
required. Therefore, the function becomes significantly inefficient for users who possess a
large number of Neatar tokens.

Insufficient error handling
203 let media = token.metadata.unwrap().media.unwrap();

The code will call panic in case of metadata absence. This is not an issue for the current
implementation. However, we recommend writing the code that falls gracefully.

Unnecessary assignments
The contract uses a deprecated NonFungibleToken.mint() function which includes the
token.owner_id check. To pass this check, avatar_create_for() function assigns
env::predecessor_account_id() value to the owner_id variable every time it is
called.

These multiple assignments are unnecessary. The variable can be initialized only once and
remain unchanged since it is always the contract’s account used in the current
implementation. Anyway, we recommend using the latest Non-fungible token version instead.

Blockchain Security Analysis by Pessimistic 7

This analysis was performed by Pessimistic:

Sergey Grigoriev, Security Engineer
Evgeny Marchenko, Senior Security Engineer
Boris Nikashin, Analyst
Alexander Seleznev, Founder

December 1, 2021

Blockchain Security Analysis by Pessimistic 8

